riešenie 11

A do tretice takáto chuťovka. Veľmajster vzal 8 poštových známok, 4 červené a 4 zelené (o čom majstri vedeli) a prilepil každému logikovi na čelo dve známky. Každý z majstrov vidí 4 ostatné známky na svojich rivaloch, ale samozrejme svoje vlastné nevidí. Taktiež nikto nevie (okrem veľmajstra) aké dve zostávajúce známky boli schované. Výroky o svojich známkach, ich poznaní, sú nasledujúce:
A: "Nie."
B: "Nie."
C: "Nie."
A: "Nie."
B: "Áno."
Akej farby má teda B známky?

Riešenie:

B uvažoval takto:
"Ak mám kombináciu červená-červená, potom A by povedal pri svojom druhom pokuse nasledovné: ‘Vidím, že B má kombináciu červená-červená. Ak mám tiež červená-červená, potom by všetky červené známky boli využité a C by teda hneď vedel, že má kombináciu zelená-zelená. Ale C nič nepovedal, takže ja (A) nemám kombináciu červená-červená. Ak by som mal 2 zelené známky, potom C by si uvedomil, že ak by mal 2 červené známky, videl by som 4 červené známky a okamžite by som to oznámil (to že mám ja – A dve zelené známky). Na druhej strane ak má C tiež 2 zelené známky, potom B by videl 4 zelené známky a okamžite by odpovedal, že má 2 červené známky. Takže C by si uvedomil, že ak mám ja (A) kombináciu zelená-zelená a B má červená-červená, a nikto z nás (ani A ani B) nič nepovedal v prvom kole, potom musí mať kombináciu zelená-červená. Ale C nič nepovedal, takže ja (A) nemôžem mať kombináciu 2 známok rovnakej farby. Musím teda mať 1 zelenú a 1 červenú známku.’" B pokračuje:
"Ale A nepovedal, že má kombináciu zelená-červená, takže predpoklad, že ja (B) mám 2 červené známky je nesprávny. A teda logicky nemôžem mať ani kombináciu zelená-zelená. To znamená jediné – ja (B) mám 1 zelenú a 1 červenú známku."
Riešením je teda to, že (samozrejme pri dodržaní uvedených podmienok, pravdivosti výrokov o svojich známkach a logickej vyspelosti jednotlivých účastníkov) B má jednu zelenú a jednu červenú známku na svojom čele. Aké známky majú ostatní nie je možné zistiť.

Skryť riešenie